Structure Reports

Online
ISSN 1600-5368

Michal Janča, Jan Taraba and Jıří Příhoda*

Department of Inorganic Chemistry, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic

Correspondence e-mail:
prihoda@chemi.muni.cz

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.060$
$w R$ factor $=0.110$
Data-to-parameter ratio $=16.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Acta Crystallographica Section E

(4-tert-Butyl-2-methylthiosemicarbazido)-(O-methyldithiophosphato)palladium(II)

The title Pd complex, $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~S}\right)\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{PS}_{2}\right)\right]$, is formed from $\mathrm{Pd}(\text { acetate })_{2}$ and 5-tert-butylamino-4-methyl-2-sulfido-2-thioxo- $1,3,4,2 \lambda^{5}$-thiadiazaphospholan-5-onium, (1), in methanol. The Pd atom is coordinated to two different ligands which are generated in situ as a result of methanolysis of the starting compound (1). Thus, Pd is complexed by the O-methyldithiophosphate ligand and by 2-methyl-4-tert-butylthiosemicarbazide. Two molecules of the Pd chelate are linked by two intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, the $\mathrm{N} \cdots \mathrm{O}$ distances of which are 3.361 and 2.827 A.

Comment

Chlorodithiophosphoric acid pyridiniumbetaine, $\mathrm{PyPS}_{2} \mathrm{Cl}$, reacts with the thiosemicarbazide derivative $(R \mathrm{NH})\left(\mathrm{H}_{2} \mathrm{~N}-\right.$ $\mathrm{NMe}) \mathrm{CS}$ (R is tert-butyl), in acetonitrile in the absence of any HCl -acceptor, to yield a new compound, (1), with a fivemembered heterocycle (Janča et al., 2001). This substance was used in an attempt to complex palladium in acetonitrile solution, but no complex formation was observed. Therefore, we used methanol as the reaction solvent. We isolated a solid product in the form of dark-orange crystals. An X-ray diffraction experiment revealed this substance to be the title complex, (2). The unexpected complex formation can be explained by the reaction of the starting complexing agent (1) with methanol, in which two ligands, O-methyldithiophosphate and 2-methyl-4-tert-butylthiosemicarbazide, are generated in situ. These ligands react further with $\mathrm{Pd}($ acetate $)_{2}$. The formation of the palladium(II) complex is shown in the scheme below.

Selected bond lengths and angles are given in Table 1 and the molecular structure is shown in Fig. 1. The palladium environment is approximately planar. This is confirmed by the values of bond angles $\mathrm{S} 1-\mathrm{Pd}-\mathrm{N} 3\left[177.91(16)^{\circ}\right]$, $\mathrm{S} 2-\mathrm{Pd}-\mathrm{S} 3$ $\left[175.90(7)^{\circ}\right], \quad \mathrm{S} 1-\mathrm{Pd}-\mathrm{S} 2 \quad\left[84.41(6)^{\circ}\right], \quad \mathrm{S} 2-\mathrm{Pd}-\mathrm{N} 3$ [95.67 (14) ${ }^{\circ}$], $\mathrm{N} 3-\mathrm{Pd}-\mathrm{S} 3 \quad\left[84.92(14)^{\circ}\right]$ and $\mathrm{S} 3-\mathrm{Pd}-\mathrm{S} 1$ [95.15 (6) ${ }^{\circ}$]. The greatest deviation from the $\mathrm{Pd} / \mathrm{S} 1 / \mathrm{S} 2 / \mathrm{S} 3 / \mathrm{N} 3$ plane is for atom S2 $(0.0821 \AA)$. O-Methyldithiophosphate is bonded to the Pd centre through atoms S 1 and S 2 . The $\mathrm{Pd}-\mathrm{S} 1$ bond [2.3069 (17) \AA A , in a trans position with respect to atom N 3 , is shorter than the $\mathrm{Pd}-\mathrm{S} 2$ distance $[2.3457(18) \AA$]. This

Received 8 April 2002 Accepted 19 April 2002 Online 11 May 2002

Figure 1
The structure of (4-tert-butyl-2-methylthiosemicarbazido)(O-methyldithiophosphato)palladium(II). Displacement ellipsoids are drawn at the 50% probability level.
difference can be explained by a stronger trans influence of nitrogen compared with sulfur. A similar difference in bond distances between a central atom and a donor S atom was observed in the case of a non-symmetric palladium complex of dithiolate and N, N-dimethylbenzylamine (Narayan et al., 1997), where the $\mathrm{Pd}-\mathrm{S} 1$ distance is 2.3303 (12) \AA and $\mathrm{Pd}-\mathrm{S} 2$ is $2.458(2) \AA$. The $\mathrm{Pd}-\mathrm{S} 1-\mathrm{S} 2-\mathrm{P}$ ring is also approximately planar, the exception being the P atom, which deviates slightly from the plane $(0.0678 \AA)$. The P atom environment is, in accordance with our expectations, tetrahedral. The lengths of the $\mathrm{P}-\mathrm{S} 1 \quad[2.033(2) \AA]$ and $\mathrm{P}-\mathrm{S} 2[2.024(2) \AA]$ bonds correspond to single-bond character. Similar distances can be found in a nickel(II) complex with O-methyldithiophosphate [2.032 (4) and 2.024 (4) Å; Gastaldi et al., 1974].

From the other side, the palladium is complexed by a neutral molecule of 2-methyl-tert-butylthiosemicarbazide. The donor atoms of the ligand are amide atom N3 and S3 in the thiocarbonyl group of the ligand. A five-membered $\mathrm{Pd} / \mathrm{N} 3 / \mathrm{N} 2 /$ C5/S3 heterocycle is formed. The bond distances in the ring are: $\mathrm{Pd}-\mathrm{N} 32.060$ (5), N3-N2 1.433 (7), N2-C5 1.345 (8), C5-S3 1.714 (6) and S3-Pd 2.2762 (17) A. Similar rings have already been described in the literature, e.g. by Neumuller et al. (1999) and Ghassemzadeh et al. (2000), where the corresponding distances are $\mathrm{Pd}-\mathrm{N} 2.079$ (5), $\mathrm{N}-\mathrm{N} 1.443$ (6), $\mathrm{N}-\mathrm{C}$ 1.353 (7), C-S 1.692 (6) and S-Pd 2.274 (2) Å. The Pd$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 5-\mathrm{S} 3$ ring can be considered planar; only atom N 3 deviates slightly from the plane of the ring $(0.0675 \AA)$. The $\mathrm{C} 5-\mathrm{S} 3$ bond $[1.714$ (6) \AA] has almost double-bond character compared with the $\mathrm{C}=\mathrm{S}$ bond in 2,4-methylthiosemicarbazide (1.697 A; Valente et al., 1998). The values for C-S bonds are in the region 1.82-1.86 \AA (International Tables for Crystallography, 1995, Vol. C, p.. 685). Two molecules of the Pd complex are linked by two intermolecular hydrogen bonds, $\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\mathrm{i}}\left[2.827\right.$ (6) \AA] and $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{ii}}$ [3.361 (7) \AA] (Fig. 2; see Table 2 for symmetry codes).

Experimental

The title palladium complex was prepared by the reaction of $\mathrm{Pd}(\text { acetate })_{2}(0.04 \mathrm{~mol})$ with the complexing agent (1) $(0.08 \mathrm{~mol})$ in 20 ml of methanol. The reaction mixture was intensively stirred for

24 h at room temperature. The crystals were grown from the solution after partial evaporation of the solvent. A dark-orange crystal was chosen for the X-ray structure determination.

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{OS}\right)\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{PS}_{2}\right)\right]$
$M_{r}=408.79$
Monoclinic, $P 2_{d} / c$
$a=12.889$ (3) А
$b=10.854$ (2) \AA
$c=11.120(2) \AA$
$\beta=105.23(3)^{\circ}$
$V=1501.0(5) \AA^{3}$
$Z=4$

Data collection

Kuma KM-4 CCD diffractometer with an Oxford Cryosystems lowtemperature device ω scans
9041 measured reflections
2636 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.110$
$S=1.16$
2636 reflections
159 parameters
H -atom parameters constrained
2249 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.078$
$\theta_{\max }=25.0^{\circ}$
$h=-15 \rightarrow 13$
$k=-12 \rightarrow 12$
$l=-11 \rightarrow 13$

$=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0398 P)^{2}\right.$
$\quad+3.35 P]$
\quad where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=1.18 \AA^{-3}$
$\Delta \rho_{\min }=-1.04 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Pd}-\mathrm{N} 3$	$2.060(5)$	$\mathrm{O} 2-\mathrm{C} 7$	$1.449(8)$
$\mathrm{Pd}-\mathrm{S} 3$	$2.2762(17)$	$\mathrm{N} 1-\mathrm{C} 5$	$1.341(8)$
$\mathrm{Pd}-\mathrm{S} 1$	$2.3069(17)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.493(8)$
$\mathrm{Pd}-\mathrm{S} 2$	$2.3457(18)$	$\mathrm{N} 1-\mathrm{H} 1$	0.880
$\mathrm{P}-\mathrm{O} 1$	$1.489(5)$	$\mathrm{N} 2-\mathrm{C} 5$	$1.345(8)$
$\mathrm{P}-\mathrm{O} 2$	$1.610(5)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.433(7)$
$\mathrm{P}-\mathrm{S} 2$	$2.024(2)$	$\mathrm{N} 2-\mathrm{C} 6$	$1.461(8)$
$\mathrm{P}-\mathrm{S} 1$	$2.033(2)$	$\mathrm{N} 3-\mathrm{H} 3$	0.988
$\mathrm{~S} 3-\mathrm{C} 5$	$1.714(6)$		
$\mathrm{N} 3-\mathrm{Pd}-\mathrm{S} 3$	$84.92(14)$	$\mathrm{C} 5-\mathrm{S} 3-\mathrm{Pd}$	$98.8(2)$
$\mathrm{N} 3-\mathrm{Pd}-\mathrm{S} 1$	$179.91(16)$	$\mathrm{C} 7-\mathrm{O} 2-\mathrm{P}$	$120.4(4)$
$\mathrm{S} 3-\mathrm{Pd}-\mathrm{S} 1$	$95.15(6)$	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$128.9(5)$
$\mathrm{N} 3-\mathrm{Pd}-\mathrm{S} 2$	$95.67(14)$	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{H} 1$	115.6
$\mathrm{~S} 3-\mathrm{Pd}-\mathrm{S} 2$	$175.90(7)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$	115.6
$\mathrm{~S} 1-\mathrm{Pd}-\mathrm{S} 2$	$84.41(6)$	$\mathrm{C} 5-\mathrm{N} 2-\mathrm{N} 3$	$119.4(5)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 2$	$105.0(3)$	$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 6$	$124.5(5)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{S} 2$	$117.3(2)$	$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 6$	$114.9(5)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{S} 2$	$108.92(19)$	$\mathrm{N} 2-\mathrm{N} 3-\mathrm{Pd}$	$114.4(4)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{S} 1$	$114.8(2)$	$\mathrm{N} 2-\mathrm{N} 3-\mathrm{H} 3$	106.3
$\mathrm{O} 2-\mathrm{P}-\mathrm{S} 1$	$109.88(18)$	$\mathrm{Pd}-\mathrm{N} 3-\mathrm{H} 3$	103.4
$\mathrm{~S} 2-\mathrm{P}-\mathrm{S} 1$	$100.81(10)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 2$	$117.0(5)$
$\mathrm{P}-\mathrm{S} 1-\mathrm{Pd}$	$87.34(8)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{S} 3$	$122.5(5)$
$\mathrm{P}-\mathrm{S} 2-\mathrm{Pd}$	$86.50(8)$	$\mathrm{N} 2-\mathrm{C} 5-\mathrm{S} 3$	$120.5(5)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3 $\cdots \mathrm{O}^{1}{ }^{\mathrm{i}}$	0.99	1.88	$2.827(6)$	160
N1-H1 $\mathrm{O}^{2 i}$	0.88	2.56	$3.361(7)$	151

Symmetry codes: (i) $2-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $x, y-1, z$.

H atoms were placed in calculated positions and refined as riding.

Figure 2
Hydrogen bonding in the title palladium(II) complex. Displacement ellipsoids are drawn at the 50% probability level.

Data collection: KM-4 Software (Kuma, 1997); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to
solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in SHELXTL (Sheldrick, 1997).

Financial support from the Ministry of Education, Czech Republic (grant No. CEZ:J07/98:143100011), and from the Grant Agency of the Czech Republic (grant No. 203/02/0436), is gratefully acknowledged.

References

Gastaldi, L., Porta, P. \& Tomlinson, A. A. G. (1974). J. Chem. Soc. Dalton Trans. pp. 1424-1429.
Ghassemzadeh, M., Bolourtchain, M., Chitsaz, S., Neumuller, B. \& Heravi, M. M. (2000). Eur. J. Inorg. Chem. 8, 1877-1882.

Janča, M., Nečas M., Žák, Z. \& Příhoda, J. (2001). Polyhedron, 20, 2823-2828. Kuma (1997). KM-4 Software. Version KM4b8. Kuma Diffraction, Wrocław, Poland.
Narayan, S., Jain, V. K. \& Butcher, R. J. (1997). J. Organomet. Chem. 549, $73-$ 80.

Neumuller, B., Heravi, M. M. \& Ghassemzadeh, M. (1999). Z. Anorg. Allg. Chem. 625, 1908-1911
Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and SHELXTL. University of Göttingen, Germany.
Valente, E. J., Zubkowski, J. D., Jabalameli, A., Mazhari, S., Venkatraman, R. \& Sullivan, R. H. (1998). J. Chem. Crystallogr. 28, 27-33.

